
Новейшее решение для распределенного хранения больших и очень больших данных

О компании

Первые в России

2009 год

Год основания компании

/

портировали систему хранения данных с х86 на отечественную платформу Е2К (Эльбрус)

разработали распределенную файловую систему хранения данных для отечественной платформы E2K (Эльбрус)

разработали кроссплатформенную отказоустойчивую СХД на All-flash NVMe и внесли в реестр МПТ ПП 719/878

Файловые системы

Проблемы существующих файловых СХД

Ограниченная производительность с узла (вертикальное масштабирование)

- Сервер на PCIe Gen4 + 24 NVMe SSD способен на 40 ГБ/с и 10 млн. IOPS (по протоколу NVMe-oF)
- XFS локально: 3-4 млн. файловых операций/сек
- NFS: максимум ~10 ГБ/с и 100–200 тыс. IOPS, что снижает эффективность системы
- Lustre, BeeGFS, DAOS: пропускная способность свыше 40 ГБ/с, но до несколько сотен тысяч операций/сек

Пример

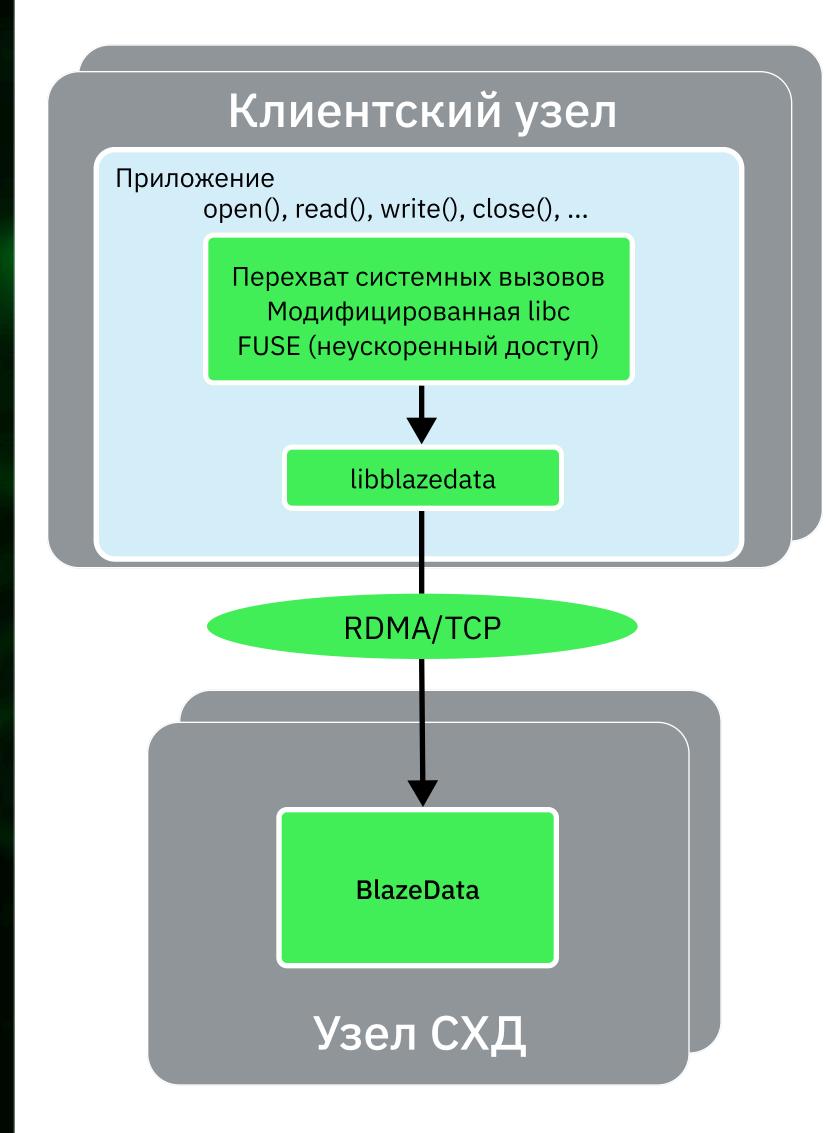
Несколько лет назад возникла задача обучения ИИ, при которой GPU-ферма требовала для полной загрузки порядка **13 млн. операций** «открыть—прочитать—закрыть» небольших файлов в секунду. Лучшее на тот момент доступное решение для хранения данных обеспечивало лишь около **120 тыс. таких операций с одного узла**. Чтобы удовлетворить требования, потребовалось бы более **100 узлов СХД** — оказалось крайне дорого и невыгодно, учитывая, что сама GPU-ферма стоила значительно меньше.

Файловые системы

Проблемы существующих файловых СХД Только параллельные файловые системы хранения данных (Lustre, BeeGFS, DAOS и другие) обеспечивают настоящее горизонтальное масштабирование

Однако они отличаются:

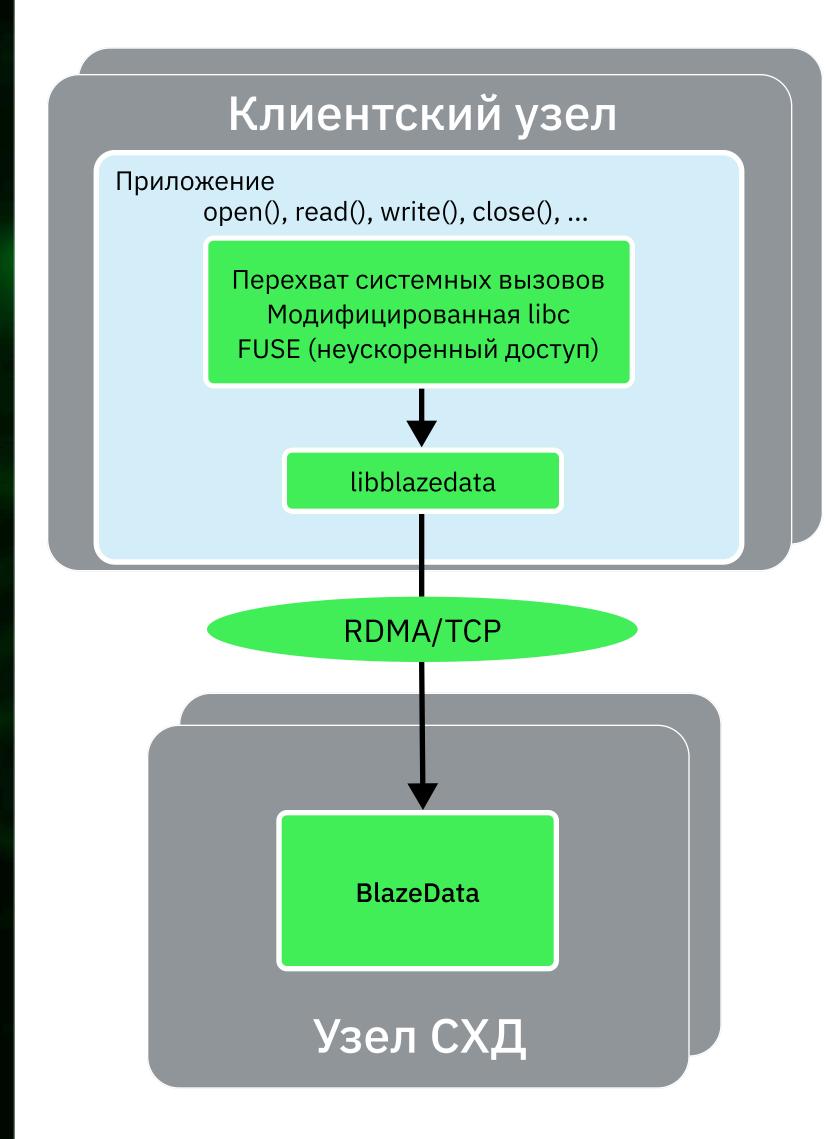
- Высокой сложностью настройки и сопровождения
- Повышенным порогом входа и общей стоимостью эксплуатации


Впервые файловое хранилище стало сопоставимо по скорости с блочным

Цель

- Получить производительность локальной файловой системы каждого серверного узла на сетевых клиентах
- До 2 миллионов файловых операций/секунду (открыть—прочитать—закрыть) с сервера среднего класса и выше
- Максимальная утилизация имеющихся аппаратных ресурсов недорогих серверов
- Минимизация стоимости СХД при требуемом уровне производительности
- Можно приобрести больше GPU ресурсов при том же бюджете
- Масштабирование по производительности и объему
- Максимальная простота использования
- Минимальная стоимость владения

Впервые файловое хранилище стало сопоставимо по скорости с блочным



Решение

- Новый легковесный высокоэффективный протокол передачи данных
- Клиентское приложение работает в обход всего VFS стека ядра на клиенте
 - Перехватываются системные вызовы (open, close, read, write, create и т.д.)
 - Вся клиентская обработка происходит в библиотеке libblazedata
 - Приложения напрямую связываются с ней

BITBLAZE

Впервые файловое хранилище стало сопоставимо по скорости с блочным

Решение

- Файлы разбиваются на части и размещаются на различных серверах
 - Размещение по математическому закону сервер метаданных не требуется
 - Файл читается сразу с нужного сервера
 - Защита от отказов
- Сервера и клиенты сами находят друг друга в сети и объединяются в кластер
 - Встроенный протокол самоконфигурирования

BITBLAZE

Доступная скорость и масштабирование

Пример со слайда 2

Для обеспечения 13 млн. операций/сек Обычная файловая система: 100 серверов BLAZEDATA: 10 серверов

Результат

- Очень тонкий клиентский стек напрямую внутри приложений
 - Низкая задержка, близкая к аппаратной
 - Полный параллелизм и множество очередей (Multi-Queue)
- Единое файловое пространство имен с множества серверов
- Масштабирование до тысяч серверов и клиентов
- Миллионы файловых операций в секунду и десятки ГБ/с с сервера среднего класса и миллиарды IOPS и десятки ТБ/с с кластера,
- Простота настройки (самоконфигурирование)
 - Сервера и клиенты сами находят друг друга
 - Ручное конфигурирование не требуется: включаешь работает
 - Прозрачное добавление новых серверов
 - Минимизирует требования к количеству и квалификации обслуживающего персонала

• Минимальная цена владения

- Поставляется в составе ПАК
- Минимальная поставка 1 сервер (2 в отказоустойчивой конфигурации)
- Планируется включение клиентской части в ведущие российские дистрибутивы Linux (получено предварительное согласие)

Преимущества

- Минимальная СТОИМОСТЬ производительности
 - Экономия по сравнению с существующими решениями до 10 раз
- Минимальная квалификация обслуживающего персонала
- Минимальное количество обслуживающего персонала

Быстрее

- Больше производительности как с серверов средней ценовой категории, так и с высокопроизводительных серверов
- Суммарная производительность многих серверов

- **Проще**
- Быстрота развертывания и подключения
- Прозрачное наращивание емкости и производительности
- Минимальная квалификация для обслуживания

Дорожная карта BlazeData

Масштабируемая параллельная файловая СХД с инновационными возможностями самоконфигурирования (кроссплатформенное ПО)

Ключевые характеристики

3Q 2025

4Q 2025

4Q 2026

Линейно масштабируемый файловый доступ до тысячи узлов

Единое пространство имен файлов

Автоматическая перебалансировка

Высокая скорость с узла

до 40 ГБ/с и 500 тыс. IOPS

Скорость с кластера

до десятков ТБ/с и многих сотен миллионов IOPS и выше

Самоконфигурирование

Метрокластер

Дедупликация

Новый инновационный файловый протокол

Задержка, сопоставимая с задержкой SSD

В разы увеличенная производительность

Файловая производительность, сопоставимая с блочными решениями

Наши контакты

Сайт BITBLAZE

Телеграм BITBLAZE

